TRABAJO ORIGINAL

USO RACIONAL DE LA ECUACION HEPARINA-PROTAMINA EN CIRUGIA CON CIRCULACION EXTRACORPOREA

Dres. Miguel Rubio MAAC, Raúl Borracci MAAC, Julio Baldi * MAAC
Luis Oliveri * MAAC y Adneris I. Carro

DEL INSTITUTO DE CARDIOLOGÍA FUNDACIÓN H. POMBO DE RODRÍGUEZ,
BUENOS AIRES

RESUMEN

El objetivo de este trabajo es demostrar la utilidad del cálculo del tiempo de coagulación activado para la dosificación y neutralización de heparina durante cirugía con circulación extracorpórea. Se midieron en forma prospectiva los volúmenes de suero en ml, en 30 pacientes sometidos a esta cirugía, sus parámetros fueron: 861,33 ± 87,44 mI (X ± ES). La comparación se realizó con un grupo histórico de 30 individuos cuyos datos fueron: 1286,66 ± 127,29 mI (X ± ES). Se demostró diferencia altamente significativa utilizando análisis de varianza (F = 7,58; F0,01 = 7,10 para 1 y 38 grados de libertad) entre ambos métodos a favor del cálculo del tiempo de coagulación activado.

SUMMARY

The purpose of this work is to determine the utility of the activated clotting time test in order to calculate the protamine dose to neutralize heparin during surgery with extracorporeal circulation. Volumes of bleeding in ml were measured prospectively in 30 patients who had undergone surgery with extracorporeal circulation; the values were: 861,33 ± 87,44 mI (X ± SE). Comparison was made with a 30 individual historical group whose values were: 1286,66 ± 127,29 mI (X ± SE). Analysis of variance has demonstrated a highly significant difference in the results of both groups (F = 7,58; F0,01 = 7,10 for 1 and 38 degrees of freedom), in behalf of the activated clotting time test.

Palabras clave: cirugía cardíaca - circulación extracorpórea - fármacos anticoagulantes

La utilización en forma correcta de la heparina sódica y su posterior neutralización con sulfato de protamina en cirugía con circulación extracorpórea ha sido motivo de controversias durante años 2-4-5.

El temor a que se produjera coagulación en el circuito extracorpóreo hizo que se administraran altas dosis de heparina aumentando así la dificultad para su posterior neutralización.

Habiendo realizado una revisión de la bibliografía quirúrgica nacional entre el año 1982 y 1987, y no encontrándonos en la misma ninguna publicación sobre el tema, decidimos presentar esta comunicación a fin de dar a conocer nuestros resultados con la utilización del tiempo de coagulación activado preparado por nuestro laboratorio y que permite, mediante estudios seriados, la dosificación de la
cantidad de heparina para lograr la anticoagulación adecuada y su correcta neutralización con protamina.

MATERIAL Y MÉTODO

Con el objetivo de demostrar alguna diferencia significativa en los volúmenes de sangrado de pacientes en los que se utilizó el sistema de tiempo de coagulación activado para neutralización de la heparina, se estudiaron en forma prospectiva un grupo de 30 individuos que fueron sometidos a cirugía de revascularización miocárdica en la Fundación entre junio y agosto de 1987 (grupo A). La comparación de estas mediciones se realizó con una muestra del mismo número de casos tomados al azar de una serie histórica de operados en esta institución en 1985 por idéntica patología y en los que se utilizaron anticoagulación con 3 mg/kg de peso de heparina sódica y corrección directa con sulfato de protamina al término de la circulación extracorpórea (grupo B) (gráfico 1).

Gráfico 2. — Para la dosificación de heparina-protamina. TCA Seg.: Tiempo de coagulación activado en segundos.

La metodología estadística empleada, incluyó el cálculo del análisis de varianza para 2 grupos con igual número de datos.

El procedimiento para la dosificación de heparina y protamina fue el siguiente; se preparó en nuestro laboratorio una fórmula con 0.2 ml de suspensión de kaolin al 1,5% con el agregado de 0.1 ml de Cl Ca2+ 0.25 M. A esta solución se le agregó 1.8 ml de sangre en el momento de realizar las mediciones. Se determinó el tiempo inicial preheparinización sistémica, asumiéndose como normal hasta 120 segundos. Para construir la curva dosis-respuesta se trazó el gráfico 2. En el gráfico 2b el punto 1 de la curva indica el valor del tiempo inicial. A los 5’ de administrar 2 mg/kg de peso de heparina en la aurícula derecha, se realizó una nueva determinación (en el caso supuesto dio 350”), de donde se obtuvo el punto 2. El punto 3 es teórico y en este caso significa que se debió administrar 1 mg/kg de peso de heparina adicional para llegar al tiempo de coagulación óptimo (480”). El punto 4 se obtuvo 5’ después de la administración de la dosis de heparina, por medio de una nueva medición (en este caso coincidió con el mismo punto 3) (gráfico 2b). Si no se correlacionaba exactamente se buscó el punto medio entre el 3 y el 4 y se trazó desde el punto 1 la curva dosis-respuesta correspondiente (gráfico 2c).

Después de cada hora de circulación extracorpórea se realizó una nueva medición y se agregó heparina para mantener el tiempo de coagulación activado en 480”. Al término de la circulación extra-
corpórea se calculó la heparina circulante de acuerdo a la posición en la curva y se neurálzó a razón de 1 de heparina - 1,3 de protamina (en el ejemplo: 400" que equivalen a 2,3 mg/kg de peso de heparina circulante) (gráfico 2d); 10" después de la administración de la protamina se determinó un nuevo valor de tiempo de coagulación activado. Si éste no alcanzó el valor del tiempo inicial se administró una nueva dosis de protamina de acuerdo a la nueva posición en la curva.

RESULTADOS

Las mediciones realizadas en ambas muestras revelan los siguientes resultados: volumen de sangrado en ml del grupo A: \(\bar{X} 861,33 \pm ES 87,4419, n = 30 \); grupo B: \(\bar{X} 1286,66 \pm ES 127,2939, n = 30 \).

El análisis de la varianza indica una diferencia altamente significativa entre los 2 grupos, para un nivel de 1% (F = 7,58; \(F_{0.01} = 7,10 \) para 1 y 58 grados de libertad).

DISCUSIÓN

El tiempo de coagulación activado fue descripto originalmente por Hattersley cit. 5. Mediante estas determinaciones es posible trazar una curva de dosis-respuestas donde se aprecian grandes variaciones individuales que impiden cualquier cálculo previo. La preferencia por este método está dada porque guarda corrección directa y lineal con la cantidad de heparina circulante, a diferencia del tiempo de tromboplastina parcial que es más variable. Se ha calculado que el tiempo de anticoagulación óptimo se encontraría alrededor de los 480" ya que a este nivel no existiría peligro de coagulación del circuito extracorpóreo, ni riesgo de consumo de factores. Tiempos más prolongados que éste, se han demostrado innecesarios e incluso perjudiciales 8.

En los datos anteriormente presentados, se muestra con claridad el significativo descenso en el volumen de sangrado en el grupo de pacientes controlados con tiempo de coagulación activado. Si bien el trabajo se ha desarrollado sobre pacientes sometidos a cirugía de revascularización miocárdica, sabemos por los datos publicados en revistas extranjeras, que este método puede hacerse extensivo en su uso a cualquier tipo de cirugía cardíaca que requiera circulación extracorpórea 1-3. A pesar de la relativa complejidad del cálculo de la dosificación de heparina y protamina existen ventajas de sobra para adoptar, como ya se realiza en algunos centros, este sistema.

BIBLIOGRAFÍA

