EDUCACION MEDICA

ELECCION DE PRUEBAS ESTADISTICAS (PARTE I)

Dres. Eduardo B. Arribalzaga MAAC y Jorge L. Nazar MAAC

Al examinar la literatura médica puede advertirse que la gran mayoría de los trabajos científicos no tienen tratamiento estadístico o si lo tienen, éste no es adecuado. Con la difusión creciente de la computación y de “software” especialmente diseñado, la ejecución de las diversas pruebas estadísticas, antes un trabajo arduo y complejo, se simplificó notablemente y puede realizarse en muchísimo menos tiempo y con escaso margen de error. Pese a estas facilidades, persiste un problema que dichos programas aún no han abordado: la elección de la prueba estadística más conveniente según el diseño de la investigación, el tipo de datos y la cantidad y calidad de las variables involucradas.

El presente trabajo tiene por objeto fijar algunas normas básicas para elegir correctamente las pruebas estadísticas necesarias. Consta de dos partes: en la primera se definen términos y conceptos de uso habitual en estadística y en la segunda se precisa la metodología de la elección.

DATOS

Son los valores de una medición. Existen dos tipos de datos:

a) Cuantitativos: se expresan numéricamente. Pueden ser discretos (valor numérico aislado y entero, p. ej. nro. de hijos) o continuos (cualquier valor dentro de límites definidos, p. ej. peso de una persona, altura).

b) Cualitativos: también llamados atributos, no se expresan numéricamente. Pueden ser:

1) Ordinales: con orden lógico y ascendente (ej. peor, igual, mejor) y

2) Nominales: pueden tener dos posibilidades (Ej.: varón-mujer, enfermo-sano) o varias posibilidades (Ej.: grupos sanguíneos).

VARIABLES

Conjunto de datos o características que se miden en un estudio.

Pueden ser:

a) dependientes: son las de interés principal o el resultado principal del estudio y

b) independientes: son las que determinan las condiciones en que se contrastan las hipótesis o se realizan las estimaciones.

Ejemplo: Si quiero estudiar la mortalidad del cólera, la variable independiente es el número de muertos y las variables independientes el sexo, ocupación, edad, peso, nutrición de los muertos.

Existen además tres categorías de variables:

1) Contínuas: están formadas por datos continuos. (Ejemplo: edad, número de cabellos).

2) Ordinales: incluyen datos ordinales (cualitativos).
(Ejemplo: estadíos de cáncer).

3) Nominales: están formadas por datos nominales (cualitativos) con sólo dos posibilidades (ejemplo: vivomuerto).

Un dato concreto, por ejemplo edad: 70 años, que es un dato continuo se puede también ubicar en una variable ordinal (ejemplo: senectud) o en una nominal (ejemplo: viejo). Esto implica una pérdida de precisión aunque se utiliza para excluir conclusiones que abarquen una población mayor.

ESTADÍSTICA MÉDICA

En la literatura médica se encuentran frecuentemente tres tipos básicos de estudios de investigación 3.

1) estudios retrospectivos o de casos y controles.
2) estudios prospectivos o de cohortes y
3) ensayos clínicos controlados:

Los dos primeros tipos de investigación clínica se denominan estudios observacionales. En ellos no se inten-
ta intervenir ni alterar el curso de un fenómeno (ejemplo: una enfermedad) sino que se observa la evolución del mismo en dos grupos con y sin las características estadísticas (grupos piloto o experimental y control o testigo).

En el tercer tipo de estudio, también llamado de experi-
mentación en humanos o de intervención, se sigue la evolución de sus integrantes durante un período para
determinar si desarrollan o no la enfermedad concreta o el trastorno que se investiga luego de la administración de una vacuna, o una medicación o técnica quirúrgica. Existe una asignación al azar a los grupos control y piloto por parte del investigador con simple o doble emascaramiento (simple o doble ciego). Ambos grupos se deben estudiar durante igual lapso sin usar controles históricos.

En los tres diferentes tipos de investigación el análisis de las observaciones debe comprender:

a) tamaño muestral,

b) nivel de significación,

c) definición de hipótesis nula (H0) y alternativa (H1), y

d) conocimiento de los errores tipo I (alfa) y tipo II (beta)

CARACTERÍSTICAS DE LA MUESTRA

Se define como población a un grupo compuesto por individuos con una determinada característica 3-4, ejemplo: pacientes con cáncer de pulmón.

Se denomina muestra a un subgrupo de una población extraído por el investigador para su estudio; ejemplo: pacientes con cáncer de pulmón operados en el hospital X.

1) **Homogeneidad**

Cuando se trata de comparar dos muestras es indispen-
sable que éstas sean homogéneas, es decir que difieran entre sí solamente en la característica a estudiar. La homo-
ogeneity depende del tamaño y de la ausencia de sesgos.

2) **Tamaño**

El tamaño de la muestra determina la probabilidad que un resultado se deba al azar. Cuanto más cercano sea el número de individuos al número total de la población es menos probable que los resultados se deban al azar en la obtención de la muestra.

Ejemplo: mortalidad por infección de un grupo (A) de 34 individuos tratados con un antibiótico (a) fue de 14 (41.2%). En el grupo B de 10 individuos tratados con el antibiótico (b) la mortalidad fue de 1 (10%). El investiga-
dor necesita saber si esta diferencia se debe al antibiótico. Si bien la diferencia es grande, como las muestras no son homogéneas porque una de ellas es pequeña, no tiene significación estadística.

3) **Sesgo**

Se denomina sesgo 1 (en inglés: bias) a un factor que afecta los resultados de una prueba desviándolos de sus valores reales e impide la comparación.

Ejemplo: se compara un grupo de pacientes (A) al que en el hospital A’ se le practica la operación A" con otro grupo de pacientes (B) con la misma patología, a quienes en el hospital B’ se les realiza la operación B".

La mortalidad del grupo A fue de un 30% y la del B del 10%. Si no se aclara que el grupo A estaba constituido por gerontes y el grupo B por gente joven podría llegar a inferirse que la operación B" o el hospital B’ son mejores que el otro. Este es un tipo de sesgo denominado de inclusión.

NIVELES DE SIGNIFICACIÓN

La estadística se fundamenta en que los datos a obtener son impredecibles y que la probabilidad de que se obtenga determinado valor es desconocida. Sin embargo los datos se distribuyen siguiendo determinados patrones y pueden agruparse en distintas categorías (distribución normal, variables aleatorias, distribución binomial y otras).

La estadística analítica o inferencia estadística pue-
de ser de dos tipos:

1) Determinación de proporciones
2) Prueba de hipótesis

1) Determinación de proporciones:
Es la relación entre la muestra estudiada y el universo poblacional del cual se extrae la muestra (Ejemplo: número de enfermos de TBC en una población determinada). Esta proporción puede deberse al azar o a un factor determinado. El investigador determina un límite para el azar, y decide que un resultado con mayor probabilidad de ocurrir por azar que el establecido por él no tiene significación estadística, es decir no se comprueba diferencia entre las proporciones. Este límite, que debe ser fijado previamente, se denomina nivel de significación o margen de error (p).

Los niveles de significación más habitualmente usados son 0.05 (5%) y 0.01 (1%). Se utiliza una p: 0.05 cuando el riesgo de atribuir a una causa, un hecho azaroso no genera una consecuencia grave y de 0.01 cuando la posibilidad de equivocarse puede tener efectos importantes. Ejemplos: si analizó el efecto de un nutriente sobre el peso corporal de una población de ratas, utilizó un nivel de significación 0.05. Si estudio la mortalidad por toxicidad de un citostático utilizó una p de 0.01. Si compara un tratamiento que cuesta $40 con otro que cuesta $60 utilizó una p de 0.05, en cambio si compara uno que cuesta $40 con otro que cuesta $4.000 utilizó una p de 0.01.

El nivel de significación debe disminuir a medida que aumenta el número de variables considerado.

Es muy común ver trabajos donde se infiere que una p de 0.0001 es más significativa que una de 0.01. Esto es falso pues lo que corresponde hacer es determinar el nivel de significación primero y luego decir si es significativo o no. según el resultado obtenido sea mayor o menor a ese nivel prefijado.

2) Prueba de hipótesis:

Hipótesis nula: consiste en suponer que no hay diferencia entre el grupo en estudio y el grupo control.

Hipótesis alternativa: consiste en suponer que hay diferencia entre el grupo en estudio y el grupo control.

Ejemplo: Dos grupos A y B de 50 ratas, cada uno fue infectado con un determinado germen. Uno de ellos (Grupo A) recibió un antibiótico. La mortalidad en el Grupo A fue de 12 animales. En el grupo B murieron 25. El primer enunciado del estadígrafo en este problema es que la diferencia de mortalidad observada NO se debe a la acción del antibiótico. Esta es la que se denomina hipótesis nula (H0). La afirmación de que la diferencia de mortalidad es debida al antibiótico se llama hipótesis alternativa (HA).

Pueden existir dos tipos de errores 4:

- **Error tipo I o alfa:** Consiste en rechazar la hipótesis nula cuando ésta es cierta, o sea consiste en considerar que hay diferencia cuando no la hay. Es decir, aceptar como verdadero algo que es falso.
- **Error tipo II o beta:** Consiste en aceptar la hipótesis nula cuando es verdad la hipótesis alternativa, o sea consiste en considerar que no hay diferencia cuando sí la hay. Es decir, aceptar como falso algo que es verdadero (Cuadro 1).

Lo precedente es el paso inicial para elegir una prueba estadística ante un determinado diseño de trabajo científico. En la segunda parte se tratará específicamente la elección de la prueba.

BIBLIOGRAFÍA