ACTUALIZACIÓN

BRAQUITERAPIA PARA LAS NEOPLASIAS DEL TORAX*

INDICACIONES Y TECNICAS

Dres. Carlos H. Spector*, MAAC, Berta Roth, Osvaldo Salariato MAAC
y Luis Thompson.

INSTITUTO DE ONCOLOGIA “ANGELO H. ROFFE” FACULTAD DE MEDICINA

Las enfermedades neoplásicas del tórax que merecen tratamiento radiante, suelen someterse a los efectos de un haz de radiaciones provenientes de una fuente externa tal como una pastilla de cobalto o un acelerador lineal de electrones. Sin embargo, también es posible introducir en el organismo fuentes radiactivas en las inmediaciones o dentro mismo del tumor. Este último método se denomina braquiterapia (de braqui, forma prefixa del griego brachys: corto, breve). Cuando la fuente se aloja en un conducto o una cavidad del organismo, la braquiterapia se denomina endoluminal o intracavitaria.

Si por el contrario se la implanta en el seno de la lesión, se la califica como intersticial. Por lo general la primera variante es removable, de modo tal que se la retira cuando ya entregó la dosis programada. Las fuentes intersticiales suelen quedar en forma permanente, pero también pueden ser retractadas si el implante se realizó mediante recursos técnicos que lo permitan, y que se comentarán más adelante.

Una de las condiciones para prescribir este método es que los tumores sean circunscritos. La correcta ubicación de las fuentes es un requisito fundamental para poder lograr resultados satisfactorios, porque como la dosis de radiación disminuye rápidamente en corta distancia, pequeñas desviaciones producen sobredosis con necrosis tisular en tanto que por el contrario, una radiación inferior a la requerida carece de acción efectiva sobre la neoplasia 3.

El objetivo de la presente actualización es describir diferentes procedimientos de braquiterapia para tratar tumores torácicos y comentar sobre sus indicaciones y casos de aplicación. Los autores mencionarán su experiencia al referirse a cada uno de ellos.

BRAQUITERAPIA TRAQUEOBRONQUIAL POR CARCINOMA OBSTRUCTIVO

Resulta conocido el hecho de que son pocos los pacientes con carcinoma broncogénico que se presentan a la consulta con enfermedad inicial pasible de resección oncológica, y de ellos algunos son considerados inoperables debido a edad avanzada, riesgo cardiológico prohibitivo, insuficiencia respiratoria u otras causas contemporáneas preexistentes. Es habitual que se les prescriba radiaciones externas, cuyos resultados en términos de control local y supervivencia, suelen ser inferiores a los de cirugía 4.

Además, este tratamiento puede generar entre los efectos adversos, un daño irreversible en el parénquima pulmonar vecino, y a veces en otros órganos.

También después de una cirugía que pretendía ser curativa, o bien al tiempo de finalizado un tratamiento radiante que pareció efectivo, puede presentarse recurrencia neoplásica en la luz bronquial generando disnea, hemoptisis, atelectasia o neumonitis obstructiva. Es evidente que suelen indicarse nuevas radiaciones externas o efectos paliativos limitados 5 o practicarse maniobras desobstructivas mediante crioterapia, electro o fotocoagulación. Estas últimas técnicas pueden producir efectos beneficiosos de inmediato, pero ellos suelen ser efímeros 6.

La colocación en el lugar de fuentes radiactivas promete de lograr resultados más duraderos que los otros mencionados para tratamiento local. Otra de las ventajas...
La bráquiterapia sobre ellos es la posibilidad de tratar lesiones por compresión extrínseca, cuando el tumor no es visible y por lo tanto el laser o el electrocauterio no son aplicables. \[8\]

Implantación intersticial de semillas radiactivas

En pacientes previamente irradiados, con recurrencia traqueal, bronquios primarios o bronquios lobulares, no se aplican semillas o alambres radiactivos en el mismo tumor para atemperar los efectos de la obstrucción y disminuir la magnitud de la hemoptisis si la hubiera. \[13\]

Actualmente se emplea el broncoscopio rígido; en la actualidad puede usarse también el flexible, instrumento que empleo por primera vez por Mittal en 1985. \[12\]

Varios autores citan a Yankauer como el primero en implantación endobronquial de radium en 1922, repetida en 1933 por Negus y por Kernan. \[12\]

La técnica de Nori, Hilaris y Martini, fue realizada tradicionalmente con isótopos de radón, de yodo y de iridio. \[14\]

La luz de un broncoscopio rígido colocan un aplicador que implanta las fuentes penetrándolas a través de la superficie del tumor. Trabajando para estos efectos en colaboración con el contiguo Royal Marsden, en el Hospital de Londres, que ha visitado uno de nosotros en se empleaba el Au 198 previa remoción de las infecciones neoplásicas mediante pinza de biopsia. \[14\]

En un caso de carcinoma vegetante alojado en la tráquea, hemos colocado alambres de iridio. El aplicador se consiguió en una aguja larga y biselada de grueso calibre. El alambre se llenó con vaselina. Del alambre de iridio cuya longitud fue previamente determinada y su radiactividad se obtuvieron pequeños segmentos, cada uno de los cuales fue doblado hasta adquirir forma de letra V. Una de las ramas de la «V» se introdujo dentro del mismo de la aguja, donde la vaselina impediría que el alambre se desprendiera durante el transcurso de la aguja. \[14\]

La luz del broncoscopio rígido, Entonces, el bisel con el montado en la punta se hundió en el tumor, al cual la aguja de inmediato, el alambre quedó fijado en el a la manera de un anzuelo. Se repitió la misma operación hasta completar la colocación de todos los segmentos de alambre preparados. \[14\]

En otro paciente hemos aplicado semillas de Au 198 a través de un broncoscopio flexible. La fuente se instaló en el punta del instrumental accesorio del endoscopio que para biopsia aspirativa transbronquial (tipo aguja de Angi) o como inyector. La aguja interior se retrae y una remató ocupó su lugar en la luz de la camisa exterior. \[14\]

El extremo de este instrumental se apuso a la superficie del tumor, se presionó sobre el pabellón de la punta, y se retraída, de modo tal que su punta se desplazará en un sentido anterógado, para que empujara la semilla y la penetra en el tejido neoplásico. \[14\]

Ocurrió, al igual que a Trombelein y cols., en 5 de sus casos, que por la consistencia escrópula del tumor previamente irradiado, hubo dificultades en la introducción de las semillas. Estos autores obtuvieron los siguientes resultados en 19 pacientes: a) en 7 de 9 (78 %) con hemoptisis, hubo mejoría significativa; b) en 4 de 6 (67 %) implantados por disnea, hubo respuesta; c) en 1 de 2 tratados por neumonitis, hubo mejoría y d) los restantes fueron asintomáticos; sólo en uno de ellos se reconoció remisión endoscópica. \[14\]

Las principales complicaciones que distintos autores han observado fueron hemoptisis, broncoespasmo y fístula tráqueo-esofágica. Nosotros observamos desprendimiento de las semillas por la tráquea.

2. **Braquiterapia endoluminal**

Este procedimiento se emplea con más frecuencia que el anterior, a juicio por las publicaciones recientes. Tiene las mismas indicaciones mencionadas para los implantes intersticiales permanentes. \[14\]

Su uso se difundió en la década de los años 80 a propósito de la resección endoscópica con laser, que preveía ser complementada mediante radioterapia local. A partir de entonces ocurrió un rápido desarrollo tecnológico de los instrumentos para aplicación, y la propuesta del método de carga diferida. Este último consiste en dejar instalado un catéter endobronquial o endotracheal en contacto inmediato con el tumor o con la compresión extrínseca, y luego de asegurar su correcta ubicación, enhebrar en su luz la fuente radiactiva. \[14\]

Para introducir catéter seguimos la técnica publicada por García y Shapiro y por Krell. \[6,14\]

El equipo se integra con endoscopista, radiólogo, radioterapeuta y anestesista. Se efectúa anestesia tópica de fosas nasales, faringe, laríngeo y árbol tráqueo-bronquial. Por vía endovenosa se inyecta Fentanil y Diazepam en dosis tales como para obtener efecto neuroléptico y tranquilizante, pero manteniendo la conciencia del enfermo. Bajo control radioscópico se inicia por vía transnasal con broncoscopio flexible de canal ancho, a través del cual se introduce un catéter plástico con extremo distal ocluso y mandril metálico en su interior. El catéter se enhebra a través del desfiladero tumoral y a continuación se retira el endoscopio, dejando el catéter in situ, emergiendo por la narina, a la que se lo fija con tela adhesiva. A continuación se obtiene un par radiográfico para verificar la correcta posición del catéter opacificado por el mandril. Es de mencionar la posibilidad alternativa de introducir el catéter por punción transtraqueal, para evitar las molestias nasofaringeas. \[6,14\]

A partir de ahora debe aplicarse la fuente radiactiva que reemplazará al mandril. Ya se habrá elegido una de las dos formas siguientes de braquiterapia endoluminal: a) baja tasa de dosis o “low dose rate”, entre 12 y 60 horas de duración y b) alta tasa de dosis o “high dose rate”, aproximadamente 20 minutos. \[6,14\]
La braquiterapia de baja tasa de dosis, se puede colocar manualmente. Una vez instalada la fuente, debe aislarse al paciente en una habitación apropiada, y mantenerlo con sedación, privación de alimento, hidratación parenteral, medicación antitusiva, y sólo si lo requiriera, se suministrarán nebulizaciones de lidocaína. Debe abstenerse al paciente de recibir visitas, y el personal asistente cumplirá con los requisitos de radioprotección. Cuando el tiempo transcurrido desde la aplicación de la fuente es el que corresponde a la dosis programada, se retira el catéter y se dispone el egreso del paciente. En muchas ocasiones la tos es irreductible y obliga a discontinuar el tratamiento; en otras se puede controlar el reflejo, pero se producen desplazamientos inconvenientes de la punta del catéter. Los costos de internación y la resistencia del personal a exponerse a las radiaciones, son otras de las principales objeciones al método. No obstante ellas, debe acreditarse a favor, el hecho de ser frecuente que una sola sesión alcance para los efectos paliativos que se buscan.

Para la braquiterapia de alta tasa de dosis conviene un aislamiento completo del paciente desde el momento mismo del comienzo de las maniobras de introducción de la fuente, la cual se hace progresar a través del catéter impulsada por sistemas instrumentales que funcionan a control remoto, monitoreándose el procedimiento con circuitos de audio y video. Los pacientes pueden ser ambulatorios y presumiblemente padecen menos el "disconfort" por el catéter o lo hacen por un tiempo más breve, ya que la irradiación finaliza a los escasos minutos de iniciada. El personal no es sometido a las radiaciones, lo cual es otra ventaja muy apreciable. No obstante estas bondades, se suelen requerir varias sesiones y el costo de los aparatos para carga diferida mediante control remoto es elevado. De estos sistemas se conocen varios modelos designados por los respectivos fabricantes como Brachytron®, Gammamed® y Selectron®, la descripción de cuyas características específicas supera los límites y objetivos de este trabajo. Se encuentran en curso protocolos de tratamiento que parecen promisoryos 7, consistentes en la introducción de varios catéteres en sendos bronquios vecinos que por su ubicación abrazan un tumor, a través de los cuales mediante estos aparatos, se ubican cargas que irradiando en forma simultánea, generarían un mejor y más efectivo efecto terapéutico.

Las complicaciones potenciales de la braquiterapia están por debajo del 10% y son las fístulas bronquiales, las hemoptisis por lesiones vasculares o necrosis tumoral radiogénica, y el incremento de los síntomas por edema 6-14. Para Krell 6, de resultados de su recopilación bibliográfica, las mejorías superaron el 50% de los pacientes tratados, sin diferencias significativas entre los métodos de alta y de baja dosis antes mencionados. Los autores de este trabajo hemos realizado 3 braqui terapias de carga diferida, con baja dosis durante varios horas con buena tolerancia y respuesta terapéutica aceptable en 2 casos.

BRAQUITERAPIA INSTERSTICIAL PEROOPERATORIA

Consiste en la colocación de fuentes radioactivas en el curso de una toracotomía, dentro de un tumor irresecable, en el residuo macroscópico resultante de una operación parcial o bien en el lecho que ocupaba una neoplasia extirpada sin márgenes de seguridad suficientemente amplios.

Podría dividirse a los pacientes candidatos a esta forma de braquiterapia en 4 grupos:

A) Aquellos operables y presumiblemente resecables, pero que en el curso de la exploración se descubren adherencias a grandes vasos o compromiso mediastinal y costovertebral que hacen imposible una exéresis oncológica 9, optando el cirujano por realizar una resección incompleta deliberada.

B) Otros en quienes lobectomías o neumonectomías son posibles por insuficiencia funcional respiratoria o la vez que reseciones segmentarias o cuneiformes son técnicamente inviables; entonces se decide en forma programada abordar el tórax exclusivamente para explorar e implantar 1. Pacientes con carcinomas para pequeñas células circunscriptos, pueden ser contados en 60-80% de los casos dependiendo del volumen tumoral 3.

C) Pueden presentarse casos de tumores localmente avanzados como el de un paciente nuestro, joven y en buen estado general, que presentaba un grosor carcinomatosa inoperable de lóbulo superior derecho con compresión tráqueal, quien experimentó una muy limitada respuesta a la radioterapia externa y a la poliquimioterapia, quedando como única alternativa la implantación percutánea para evitar la asfixia.

D) Aquellos con adherencias o invasiones parietales que hagan presumir que las resecciones, por más amplias que se hubieran realizado, pudieron no haber sido radicales 13.

Las ventajas del método son 11:

1) la aplicación de las fuentes con el control visual permite la entrega de una dosis más alta que radioterapia externa; el tratamiento es localizado y adaptado con precisión a la forma del tumor.

2) la dosis decae rápidamente fuera del volumen implantado.

3) el daño al pulmón normal circundante es menor que en radioterapia externa, y

4) el tratamiento es corto y no agrega morbilidad.

predecible por la sola toracotomía o por el procedimiento de resección realizado.

Existen 2 técnicas de implantación: a) la permanente, en la que la fuente queda en forma definitiva en el tejido, y b) la temporal o removible, consistente en que el material radiactivo, por lo general de carga diferida, se entrena cuando se ha finalizado de entregar la dosis planeada.

Nuestra experiencia con braquioterapia peroperatoria se limita a 4 casos. En uno de ellos se implantaron semillas mediante aplicador de Mick, a 2 se les dejaron catéteres para carga diferida de iridio y en el restante se suturó al tejido parietal al que estaba firmemente adherido el cáncer, con pastilla de Spongostan®, con 48 semillas de Ir engarzadas en su espesor.

Implantación percutánea de lesiones parietales

En aquellas lesiones tumorales que afectan la pared torácica, ya sean las originadas en sus tejidos propios o bien propagadas a partir del pulmón o de la pleura, puede aplicarse braquiaterapia instenticial percutánea en las siguientes condiciones: a) extensión tal que hace presumir la imposibilidad de exéresis oncológica, b) paciente inoperable por riesgo elevado y c) rechazo a la propuesta quirúrgica.

Obtenida la radiografía adecuada para delimitar la lesión y calcular la dosis, se ubican las fuentes con aplicación en forma de agujas introducidas bajo control radioscópico en planos frontal y lateral. Una nueva radiografía certifica la adecuada distribución de las fuentes. Para Hila y Martini, las ventajas de esta técnica son: a) la posibilidad de prescindir de la anestesia general y de una clínica de cirugía mayor, b) la opción de poderla realizar en forma ambulatoria en algunos de los pacientes, y c) favorable equación costo-beneficio.

Es resumen:

La colocación de fuentes radiactivas dentro del órgano, es un valioso recurso, a veces alternativo y otras complementario, para el tratamiento de diferentes localizaciones de neoplasias ubicadas en el tórax. Es sin embargo discutible la elección de braquiaterapia como tratamiento inicial de tumores malignos.

La braquiaterapia endobronquial tiene su principal aplicación en casos de persistencia o de recurrencia neoplásica, luego de tratamientos previos, en especial cuando el tumor se genera, o el cirujano no consigue los márgenes libres de células neoplásicas. Por lo tanto, a menor tamaño de la lesión y una menor actividad de las mismas, es más preferible su tratamiento mediante técnica de brachiterapia local.

De las dos maneras de efectuar braquiaterapia endobronquial, es más frecuentemente empleada la endoluminal, pero algunos pacientes no toleran la fuente instalada a través de la nasofaringe ni aún por lapsos cortos. Entonces es mandatoria la braquiaterapia endoscópica intersticial.

4) La endoluminal tiene entre otras ventajas, la de permitir la carga diferida del material radiactivo y la remoción de la fuente en el momento apropiado.

5) Entre las dos opciones de braquiaterapia endoluminal - alta y baja tasa de dosis-, no hay definición absoluta sobre cuál debe ser la recomendación. El cirujano debe elegir la que le encuentra más sencilla de manejar.

6) La braquiaterapia intraoperatoria puede emplearse en caso de que se encuentre una lesión localizada de una espesura tal que justifique el procedimiento y que sea accesible para el cirujano.

7) En casos de resecciones incompletas u otros en que los márgenes de seguridad no satisfagan, pueden aplicarse fuentes radiactivas en el residuo o en el lecho tumoral respectivamente.

8) La implantación percutánea no permite tratar tumores torácicos parietales o del manto pulmonar que invaden la pared, en pacientes inoperables debido a condiciones generales desfavorables, o a un grado avanzado de extensión loco-regional que hiciere inextirpable la lesión. Esta técnica tiene la ventaja de poderse realizar sin toracotomía, con anestesia local, y a veces en pacientes ambulatorios.

9) La braquiaterapia requiere de un trabajo en equipo multidisciplinario que actúe en un centro oncológico con dotación e infraestructura adecuados.

BIBLIOGRAFÍA

4. Hilaris B.S.: The role of interstitial brachytherapy in

